Frequently Asked Questions

A curated summary of the top questions asked on our Slack community, often relating to implementation, functionality, and building better products generally.
Statsig FAQs

What is the recommended way to roll out a feature customer by customer in a B2B context using Statsig?

In a B2B context, the recommended way to roll out a feature customer by customer is by using feature gates. You can create a feature gate and add a list of customer IDs to the conditions of the gate. This way, only the customers in the list will pass the gate and have access to the feature, while the rest will go to the default behavior.

Here's an example of how you can do this:  

const user = {      userID: '12345',      email: '',      ...   };       const showNewDesign = await Statsig.checkGate(user, 'new_homepage_design');   if (showNewDesign) {      // New feature code here } else {      // Default behavior code here }  

 In this example, 'new_homepage_design' is the feature gate, and '12345' is the customer ID. You can replace these with your own feature gate and customer IDs.On the other hand, Dynamic Configs are more suitable when you want to send a different set of values (strings, numbers, etc.) to your clients based on specific user attributes, such as country.

Remember to follow best practices for feature gates, such as managing for ease and maintainability, selecting the gating decision point, and focusing on one feature per gate.

Alternatively, you can target your feature by CustomerID. You could either use a Custom Field and then pass a custom field to the SDK {custom: {customer: xyz123} or create a new Unit Type of customerID and then target by Unit ID. For more information on creating a new Unit Type, refer to the Statsig documentation.

Join the #1 Community for Product Experimentation

Connect with like-minded product leaders, data scientists, and engineers to share the latest in product experimentation.

Try Statsig Today

Get started for free. Add your whole team!

What builders love about us

OpenAI OpenAI
Brex Brex
Notion Notion
SoundCloud SoundCloud
Ancestry Ancestry
At OpenAI, we want to iterate as fast as possible. Statsig enables us to grow, scale, and learn efficiently. Integrating experimentation with product analytics and feature flagging has been crucial for quickly understanding and addressing our users' top priorities.
Dave Cummings
Engineering Manager, ChatGPT
Brex's mission is to help businesses move fast. Statsig is now helping our engineers move fast. It has been a game changer to automate the manual lift typical to running experiments and has helped product teams ship the right features to their users quickly.
Karandeep Anand
At Notion, we're continuously learning what our users value and want every team to run experiments to learn more. It’s also critical to maintain speed as a habit. Statsig's experimentation platform enables both this speed and learning for us.
Mengying Li
Data Science Manager
We evaluated Optimizely, LaunchDarkly, Split, and Eppo, but ultimately selected Statsig due to its comprehensive end-to-end integration. We wanted a complete solution rather than a partial one, including everything from the stats engine to data ingestion.
Don Browning
SVP, Data & Platform Engineering
We only had so many analysts. Statsig provided the necessary tools to remove the bottleneck. I know that we are able to impact our key business metrics in a positive way with Statsig. We are definitely heading in the right direction with Statsig.
Partha Sarathi
Director of Engineering
We use cookies to ensure you get the best experience on our website.
Privacy Policy