This provides a complete view of each feature’s performance against your company’s suite of metrics. The best part… this is all done automatically; Zero overhead, no extra steps, and this doesn’t change how long your rollout takes.
But what if you needed something even more powerful? What if you want to run A/B/n experiments? Or need to avoid experimental collision? What if you prefer a detailed report focussed on validating your hypotheses? Introducing Experiments+.
Experiments+ is Statsig’s formal A/B/n testing and experimentation tool. It lets experimentalists:
Set up hypotheses, define key metrics, and set a target completion date
Set audience targeting rules
Deploy multiple test groups, at custom percents
Set up layers (aka Universes) allowing you to avoid collisions by running mutually exclusive experiments
Receive a detailed report to evaluate your hypotheses against the key metrics.
Holistically understand the experiment’s impact on your company’s entire suite of metrics. This is done with our popular “Pulse” view that helps you understand the primary, secondary and ecosystem effects. This allows you to generalize learnings, creating new hypotheses and ideas.
At Statsig, we firmly believe A/B Testing doesn’t need to be difficult. In line with this philosophy, we’ve built a 3-step creation flow for Experiments+.
This is just the first version of Experiments+. We have many more exciting features in the works and would love to hear from you on what else we should be building and whether this is works for you.
Want to check out Statsig? You can signup for a free account at https://www.statsig.com. You’ll be able to use our SDK and console and start building immediately. You can also play with our demo account at https://console.statsig.com/demo which includes Experiments+.
Find out how we scaled our data platform to handle hundreds of petabytes of data per day, and our specific solutions to the obstacles we've faced while scaling. Read More ⇾
The debate between Bayesian and frequentist statistics sounds like a fundamental clash, but it's more about how we talk about uncertainty than the actual decisions we make. Read More ⇾
Building a scalable experimentation platform means balancing cost, performance, and flexibility. Here’s how we designed an elastic, efficient, and powerful system. Read More ⇾
Here's how we optimized store cloning, cut processing time from 500ms to 2ms, and engineered FastCloneMap for blazing-fast entity updates. Read More ⇾
It's one thing to have a really great and functional product. It's another thing to have a product that feels good to use. Read More ⇾
Stratified sampling enhances A/B tests by reducing variance and improving group balance for more reliable results. Read More ⇾