🕵 Differential Impact Detection

Statsig Product Updates
< All updates
7/19/2024

Vineeth Madhusudanan

Product Manager, Statsig

Differential Impact Detection

Statsig can now automatically flag when sub-populations respond very differently to an experiment. This is sometimes referred as Heterogeneous Effect Detection or Segments of Interest.

Overall results for an experiment can look "normal" even when there's a bug that causes crashes only on Firefox, or when feature performs very poorly only for new users. You can now configure these "Segments of Interest" and Statsig will automatically analyze and flag experiments where we detect differential impact. You will be able to see the analysis that resulted in this flag.

Learn about how this works or see how to turn this on in docs. This feature is available on Statsig Warehouse Native (and is coming to Statsig Cloud soon).


Join the #1 experimentation community

Connect with like-minded product leaders, data scientists, and engineers to share the latest in product experimentation.

Try Statsig Today

Get started for free. Add your whole team!

What builders love about us

OpenAI OpenAI
Brex Brex
Notion Notion
SoundCloud SoundCloud
Ancestry Ancestry
At OpenAI, we want to iterate as fast as possible. Statsig enables us to grow, scale, and learn efficiently. Integrating experimentation with product analytics and feature flagging has been crucial for quickly understanding and addressing our users' top priorities.
OpenAI
Dave Cummings
Engineering Manager, ChatGPT
Brex's mission is to help businesses move fast. Statsig is now helping our engineers move fast. It has been a game changer to automate the manual lift typical to running experiments and has helped product teams ship the right features to their users quickly.
Brex
Karandeep Anand
President
At Notion, we're continuously learning what our users value and want every team to run experiments to learn more. It’s also critical to maintain speed as a habit. Statsig's experimentation platform enables both this speed and learning for us.
Notion
Mengying Li
Data Science Manager
We evaluated Optimizely, LaunchDarkly, Split, and Eppo, but ultimately selected Statsig due to its comprehensive end-to-end integration. We wanted a complete solution rather than a partial one, including everything from the stats engine to data ingestion.
SoundCloud
Don Browning
SVP, Data & Platform Engineering
We only had so many analysts. Statsig provided the necessary tools to remove the bottleneck. I know that we are able to impact our key business metrics in a positive way with Statsig. We are definitely heading in the right direction with Statsig.
Ancestry
Partha Sarathi
Director of Engineering
We use cookies to ensure you get the best experience on our website.
Privacy Policy