πŸ“ƒ Tables as Metric Sources

Statsig Product Updates
< All updates
5/13/2024

Vineeth Madhusudanan

Product Manager, Statsig

Tables as Metric Source

When we created Metric Sources, we supported arbitrary SQL queries to maximize flexibility. We've now added support for directly pointing to tables for when that's what you want.

Using tables directly is simpler and improves performance. We can be pick just the columns we need to operate on even when the table is very wide. Complex filters can be applied efficiently without your SQL engine first trying to materialize a CTE.

An added perk with using Tables as a Metric Source is being able to use formulae. You can apply simple SQL transforms to columns (e.g. convert from cents to dollars by dividing by 100) or alias them to make them more discoverable.

See docs


Join the #1 experimentation community

Connect with like-minded product leaders, data scientists, and engineers to share the latest in product experimentation.

Try Statsig Today

Get started for free. Add your whole team!

Why the best build with us

OpenAI OpenAI
Brex Brex
Notion Notion
SoundCloud SoundCloud
Ancestry Ancestry
At OpenAI, we want to iterate as fast as possible. Statsig enables us to grow, scale, and learn efficiently. Integrating experimentation with product analytics and feature flagging has been crucial for quickly understanding and addressing our users' top priorities.
OpenAI
Dave Cummings
Engineering Manager, ChatGPT
Brex's mission is to help businesses move fast. Statsig is now helping our engineers move fast. It has been a game changer to automate the manual lift typical to running experiments and has helped product teams ship the right features to their users quickly.
Brex
Karandeep Anand
President
At Notion, we're continuously learning what our users value and want every team to run experiments to learn more. It’s also critical to maintain speed as a habit. Statsig's experimentation platform enables both this speed and learning for us.
Notion
Mengying Li
Data Science Manager
We evaluated Optimizely, LaunchDarkly, Split, and Eppo, but ultimately selected Statsig due to its comprehensive end-to-end integration. We wanted a complete solution rather than a partial one, including everything from the stats engine to data ingestion.
SoundCloud
Don Browning
SVP, Data & Platform Engineering
We only had so many analysts. Statsig provided the necessary tools to remove the bottleneck. I know that we are able to impact our key business metrics in a positive way with Statsig. We are definitely heading in the right direction with Statsig.
Ancestry
Partha Sarathi
Director of Engineering
We use cookies to ensure you get the best experience on our website.
Privacy Policy